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Abstract. In this paper, we consider a class of quadratic switching Liénard
systems with three switching lines. We give an algorithm for computing the

Lyapunov constants of this system. Based on this method, we obtain a center
condition and three limit cycles bifurcating from the focus (0, 0). Further, an

example of quadratic switching systems is constructed to show the existence

of six limit cycles bifurcating from the center. This is a new low bound on the
maximal number of small-amplitude limit cycles obtained in such quadratic

switching systems.

1. Introduction. In mechanics, engineering and control fields, many mathemati-
cal models are described by dynamical systems whose right-hand side are not con-
tinuous or not differentiable, see for instance the classical books [1, 12]. Based
on the important application of switching systems, the center and limit cycle of
switching systems have attracted more and more attention.

Filippov [7] established the qualitative theory for switching systems. Coll and
Gasull [4] obtained formulas for computing the first three Lyapunov quantities.
Five limit cycles in a quadratic switching system are constructed by Gasull and
Torregrosa [8], while only 4 limit cycles exist for quadratic continuous systems [14,
2]. Center conditions have been established for the switching Kukles and Liénard
systems [8, 5]. Han and Zhang [11] proved that 2 limit cycles can bifurcate from a
focus for piecewise linear systems. Chen and Du [3] constructed a switching Bautin
system to show the existence of 9 limit cycles. Tian and Yu [15] provided a complete
classification on center conditions in the switching Bautin system, and constructed
an example to prove that 10 limit cycles can bifurcate from the center. Recently,
a planar quadratic switching system (the switching line isn’t straight) has been
constructed to obtain 16 limit cycles [6] by using the averaging approach up to ε2

order. Meanwhile, some works focus on the center and limit cycle problems in cubic
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switching systems. Guo et al. [10] studied a class of Z2-equivariant cubic switching
systems, and showed the existence of 18 limit cycles. Very recently, Gouveia and
Torregrosa [9] found 24 limit cycles in a cubic switching polynomial system by
perturbing a single Darboux center. Yu et al. [18] constructed a cubic switching
polynomial system with Z2-symmetry, and proved that such a system could exhibit
total 18 limit cycles around symmetric foci.

However, few works focus on the system with more than two switching lines. For
example, Wang et al. [16] investigated the limit cycle bifurcations for a class of
perturbed planar piecewise smooth systems with 4 switching lines. Li and Yu [13]
constructed a cubic Z2-equivariant system with 4 switching lines and proved the
existence of 15 limit cycles.

If non-smooth systems have different definitions for the continuous vector fields
in two or more different regions divided by lines or curves, we call such systems
switching systems. For example, a class of switching system with three lines (y >
0, x = 0; x < 0, y = 0; y < 0, x = 0) is described by

(ẋ, ẏ) =


(δx− y + f1(x, y), x+ δy + g1(x, y)), if x < 0, y < 0,

(δx− y + f2(x, y), x+ δy + g2(x, y)), if x > 0,

(δx− y + f3(x, y), x+ δy + g3(x, y)), if x < 0, y > 0,

(1)

where |δ| � 1, fi(x, y) and gi(x, y), i = 1, 2, 3 are analytic functions in x and y,
starting from at least second-order terms. Actually, the origin of system (1) is an
equilibrium. System (1) includes three subsystems called S1, S2 and S3, which
defined for [x < 0, y < 0], [x > 0] and [x < 0, y > 0] respectively.

Many researchers [17] have consider the smooth generalized Liénard system ÿ +
f(y)ẏ + g(y) = 0, which is rewritten as a differential system:

ẋ = −xf(y)− g(y), ẏ = x.

In this paper, we will study a switching Liénard system:

(
ẋ
ẏ

)
=



(
x(δ + a11y)− y + a02y

2

x

)
, if x < 0, y < 0,(

−y
x

)
, if x > 0,(

x(δ + b11y)− y + b02y
2

x

)
, if x < 0, y > 0,

(2)

where δ, ai’s and bi’s are real parameters, satisfying |δ| � 1.
To study the center conditions and bifurcation of limit cycles associated with a

singular point in a switching system, we need to compute Lyapunov constants of
the switching Liénard system (2).

The main goal of this paper is to give an algorithm for computing Lyapunov
constants of switching systems with three switching lines. Based on the method,
we derive center condition and analyze the bifurcation of limit cycles in (2). We
compute the first four Lyapunov constants for the singular point (0, 0) of system (2)
to obtain the center conditions and prove the existence of 3 limit cycles bifurcating
from the origin. Then we choose the center condition with proper perturbation to
construct a perturbed system, and then compute the Lyapunov constants associated
with the origin to prove the existence of six limit cycles around (0, 0).
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2. Computation of Lyapunov constants. In this section, we give an algorithm
for computing Lyapunov constants. Note that by computation we know δ is the
linear perturbation parameter, which will be setted as 0 when we consider limit
cycle and center problems. It is observed that system (2) is a special case of (1) by
letting δ = 0. Thus we give the general method for computing Lypunov constants
of system (1).

We first rewrite the system (1) as

(
ẋ
ẏ

)
=



 δx− y +
n∑
k=2

X1,k(x, y)

x+ δy +
n∑
k=2

Y1,k(x, y)

 , if x < 0, y < 0,

 δx− y +
n∑
k=2

X2,k(x, y)

x+ δy +
n∑
k=2

Y2,k(x, y)

 , if x > 0,

 δx− y +
n∑
k=2

X3,k(x, y)

x+ δy +
n∑
k=2

Y3,k(x, y)

 , if x < 0, y > 0,

(3)

where Xi,k(x, y) and Yi,k(x, y) are homogeneous polynomials in x and y. Under the
polar coordinates transformation, x=rcosθ and y=rsinθ, (3) can be rewritten as

dr

dθ
=



δr +
∑n
k=2 Υ1,k(θ)rk

1 +
∑n
k=2 Θ1,k(θ)rk−1

= F1(r, θ), for θ ∈ (−π,−π2 ),

δr +
∑n
k=2 Υ2,k(θ)rk

1 +
∑n
k=2 Θ2,k(θ)rk−1

= F2(r, θ), for θ ∈ (−π2 ,
π
2 ),

δr +
∑n
k=2 Υ3,k(θ)rk

1 +
∑n
k=2 Θ3,k(θ)rk−1

= F3(r, θ), for θ ∈ (π2 , π),

(4)

where Υi,k(θ) and Θi,k(θ) are polynomials in sinθ and cosθ of degrees k + 1. By
the method of small parameters of Poincaré, the solutions of the three subsystems
of (4) are given by

r1(h, θ) =
∑
k≥1

uk(θ)hk, r2(h, θ) =
∑
k≥1

vk(θ)hk, r3(h, θ) =
∑
k≥1

wk(θ)hk,

(5)
where

u1(−π2 ) = v1(−π2 ) = 1, w1(π2 ) = v1(π2 ),

uk(−π2 ) = vk(−π2 ) = 0, wk(π2 ) = vk(π2 ), ∀k ≥ 2.
(6)

Then, we know that r2(h,−π2 ) = r1(h,−π2 ) = h and r3(h, π2 ) = r2(h, π2 ).
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Figure 1. Diagram

Substituting the solutions (5) into (4), we can solve uk(θ) or vk(θ) one by one by
integral operations. Consequently, we can define the following successive functions,

41(h) = h− r1(h,−π), 42(h) = r2(h,
π

2
)− r2(h,−π

2
), 43(h) = r3(h, π)− r3(h,

π

2
)

for the three subsystems of (4), respectively. From the diagram (Figure 1), the
successive function for the switching system (3) can be defined as

4(h) = 41(h) +42(h) +43(h)

= h− r1(h,−π) + r2(h, π2 )− r2(h,−π2 ) + r3(h, π)− r3(h, π2 )

= r3(h, π)− r1(h,−π).

(7)

Thus the displacement function 4(h) can be expanded as

4(h) =

n∑
k=1

(wk(π)− uk(−π))hk =

n−1∑
k=0

Vkh
k+1, (8)

where Vk is called the kth-order Lyapunov constant of the switching system (3).
Based on the above theory, we give an algorithm for computing the Lyapunov

constants.
Next, we turn to discuss how to determine the maximal number of limit cycles

which may bifurcate from a Hopf critical point. Generally, the following theorem
gives sufficient conditions for the existence of small-amplitude limit cycles in the
switching system (1). (The proof can be found in [15].)

Theorem 2.1. Suppose that there exists a sequence of Lyapunov constants of
system (3), Vi0 , Vi1 , . . . , Vik , with 1 = i0 < i1 < · · · < ik, such that Vj =
O(|Vi0 , . . . , Vil |) for any il < j < il+1. Further, if at the critical point C, Vi0 =
Vi1 = · · · = Vik−1 = 0, Vik 6= 0, and

det

[
∂(Vi0 , Vi1 , · · · , Vik−1

)

∂(c1, c2, · · · , ck)

]
C

6= 0, (9)

then system (3) has exactly k limit cycles in a δ-ball with its center at the origin.

3. Center condition and Hopf bifurcation for system (2). In this section,
we consider the center conditions and bifurcation of limit cycles for the switching
quadratic Liénard system (2). Clearly, the singular point (0, 0) of system (2) is a
Hopf-type critical point. In the following, we first use Algorithm 1 to compute the
Lyapunov constants for the origin of system (2), and then use them to derive the
center conditions and consider limit cycle bifurcation.
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Algorithm 1 Lyapunov Constants Algorithm

Input: System (1).
Output: Lyapunov constants.
1: Rewrite system (1) as (4).

2: Let F̂i(h, θ) be the expression by substituting (5) to Fi(r, θ) for i = 1, 2, 3 in
(4).

3: Expand F̂i(h, θ) in Taylor series at h = 0, denoted by F̂i(h, θ) =
∑∞
j=1 Pi,j(θ)h

j .

4: Let E1,k be the ordinary equation duk(θ)
dθ = P1,k(θ), E2,k be the ordinary equa-

tion dvk(θ)
dθ = P2,k(θ), E3,k be the ordinary equation dwk(θ)

dθ = P3,k(θ).
5: for k from 1 to n+1 do
6: Solve uk(θ) from E1,k, vk(θ) from E2,k and wk(θ) from E3,k under the initial

conditions (6).
7: end for
8: for k from 0 to n do
9: Let Vk = wk+1(π)− uk+1(−π).

10: end for
11: return Vk.

With the aid of the program in Maple, we have computed the Lyapunov constants
associated with the singular points (0, 0) of system (2), as given in the following
theorem.

Theorem 3.1. For system (2), the first four Lyapunov constants at the origin are
given by

V0 = πδ +O(δ2),

V1 = 1
3 (b11 − b02 − a02 − a11),

V2 = 1
18 (a2

02 − b202)− 1
36 (a2

11 − b211) + ( π16 −
2
9 )(a02a11 + b02b11),

V3 = 1
135 (a3

11 − b311) + (π8 −
16
45 )(a2

02a11 − b202b11).

Now, we turn to discuss the Hopf bifurcation of system (2). From Theorem 3.1
we have the following two theorems.

Theorem 3.2. The origin of system (2) is a center if and only if δ = 0, b11 = a11

and b02 = −a02.

Theorem 3.3. System (2) can have at least 3 limit cycles around the origin.

3.1. Proof of Theorems 3.2 and 3.3. For system (2), as discussed in the proof
of Theorem 3.1, we set δ = 0 to get V0 = 0. From the second Lyapunov constant
V1 in Theorem 3.1, we solve V1 = 0 to obtain

b02 = b11 − a02 − a11. (10)

Then, solving V2 = 0 yields

a02 =
3πb11 + 4a11 − 12b11

3π − 16
. (11)

Then we have

V3 = − a11 − b11

1080(3π − 16)2
V31, (12)



6 XIANGYU WANG AND LAIGANG GUO

where

V31 = (4096− 1392π − 72π2)(a2
11 + b211)− (88064− 67872π + 16488π2

−1215π3)a11b11.
(13)

Then, we solve V3 = 0. We give the following discussion.

1) Let a11 − b11 = 0 to solve V3 = 0.
Then we have b11 = a11 and b02 = −a02 by (10)(11). Under this condition,

system (2) becomes

(
ẋ
ẏ

)
=



(
−y + a11xy + a02y

2

x

)
, if x < 0, y < 0,(

−y
x

)
, if x > 0, ,(

−y + a11xy − a02y
2

x

)
, if x < 0, y > 0.

(14)

It is immediately observed that system (14) remains unchanged under the
transformation [x → x, y → −y, t → −t], which implies (14) is symmetric
with the x-axis. Thus, the origin is a center.

2) It is shown that V31 has the discriminant,

∆ = −3(16− 3π)2(135π − 376)(26624− 21696π + 5544π2 − 405π3) < 0,

which implies that V31 = 0 has no solutions besides a11 = b11 = 0. However,
a11 = b11 = 0 results b02 = a02 = 0, which makes system (2) become the
trivial integral system ẋ = −y, ẏ = x. Thus the origin is a center, and this is
a special case of 1).

From the case 1), Theorem 3.2 is proved.
Next, for obtaining the maximum number of limit cycles, we set a11 6= b11.

With the results obtained above, a direct calculation shows that the determinant
evaluated at the critical values is given by

det

[
∂(V1, V2)

∂(b02, a02)

]
= − (a11 − b11)(3π − 16)

144
6= 0.

From case 2), by Theorem 2.1, system (2) have 3 small-amplitude limit cycles
bifurcating from the center-type singular point (the origin). Theorem 3.3 is proved.

4. Six limit cycles generated by perturbing system (2) under the center
condition. In this section, we present our main result of this paper. We want to
perturb the system (2) to generate small-amplitude limit cycles around the center.
We add quadratic perturbations to system (2) to obtain the following perturbed
system:

(
ẋ
ẏ

)
=



[
−y + a11xy + a02y

2 + ε(δx+ p1x
2 + p2xy + p3y

2)
x+ ε(δy + p4x

2 + p5xy + p6y
2)

]
, if x < 0, y < 0,[

−y
x

]
, if x > 0,[

−y + a11xy − a02y
2 + ε(δx+ q1x

2 + q2xy + q3y
2)

x+ ε(δy + q4x
2 + q5xy + q6y

2)

]
, if x < 0, y > 0,

(15)

where δ, pi’s and qi’s are real parameters, satisfying |δ| � 1 and 0 < ε� 1.
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Theorem 4.1. The perturbed system (15) can have at least six limit cycles around
the origin.

Proof. To prove the existence of six limit cycles, we need to find the ε-order Lya-
punov constants εVi, i = 0, 1, · · · . First we have V0 = πδ, thus letting δ = 0 yields
V0 = 0. Then we obtain

V1 =
1

3
(q2 + q4 + 2q6 − 2q1 − q3 − q5 − 2p1 − p3 − p5 − p2 − p4 − 2p6). (16)

Solving V1 for p6 to get

p6 = q6 − q1 − p1 +
1

2
(q2 + q4 − q3 − q5 − p3 − p5 − p2 − p4). (17)

Now, in order to solve higher order Lyapunov constant equations using the re-
maining perturbation parameters, we assume that F0 = a11F1F2 6= 0, where

F1 = 45πa202 − 6πa02a11 − 128a202 + 48a211,

F2 = 103275π3a302a
2
11 − 275400π2a402a11 − 752760π2a302a

2
11 + 1309500π2a202a

3
11

−181440π2a02a
4
11 − 115200πa502 + 2031360πa402a11 − 68544πa302a

2
11 − 4412160πa202a

3
11

+1133088πa02a
4
11 − 112320πa511 + 327680a502 − 3735552a402a11 + 4300800a302a

2
11

+843776a202a
3
11 − 1658880a02a

4
11 + 208896a511.

(18)

Then, solving V2, V3 and V4 for p2, p4, p3 respectively, we obtain

p2 = 1
6a11

(6πa02p1 + 3πa02p3 + 3πa02p4 + 3πa02p5 + 6πa02q1 + 3πa02q3 − 3πa02q4

+3πa02q5 − 3πa11p1 − 3πa11p3 − 3πa11q1 − 3πa11q3 − 8a02p1 − 16a02p3 − 4a02p5

−8a02q1 − 16a02q3 − 4a02q5 + 4a11p1 + 2a11p3 + 6a11p4 + 2a11p5 + 4a11q1 + 6a11q2

+2a11q3 − 6a11q4 + 2a11q5),

p4 = − 1
F1

(90πa202p1 + 45πa202p3 + 45πa202p5 + 90πa202q1 + 45πa202q3 − 45πa202q4

+45πa202q5 − 147πa02a11p1 − 96πa02a11p3 − 51πa02a11p5 − 147πa02a11q1

−96πa02a11q3 + 6πa02a11q4 − 51πa02a11q5 + 6πa211p1 + 6πa211p3 + 6πa211q1

+6πa211q3 − 256a202p1 − 128a202p3 − 128a202p5 − 256a202q1 − 128a202q3 + 128a202q4

−128a202q5 + 448a02a11p1 + 288a02a11p3 + 160a02a11p5 + 448a02a11q1 + 288a02a11q3

+160a02a11q5 − 16a211p1 − 8a211p3 − 8a211p5 − 16a211q1 − 8a211q3 − 48a211q4 − 8a211q5),

(19)

p3 = − 1
F2

(206550π3a302a
2
11p1 + 103275π3a302a

2
11p5 + 206550π3a302a

2
11q1 + 103275π3a302a

2
11q3

+103275π3a302a
2
11q5 − 550800π2a402a11p1 − 275400π2a402a11p5 − 550800π2a402a11q1

−275400π2a402a11q3 − 275400π2a402a11q5 − 1505520π2a302a
2
11p1 − 752760π2a302a

2
11p5

−1505520π2a302a
2
11q1 − 752760π2a302a

2
11q3 − 752760π2a302a

2
11q5 + 2084400π2a202a

3
11p1

+774900π2a202a
3
11p5 + 2084400π2a202a

3
11q1 + 1309500π2a202a

3
11q3 + 774900π2a202a

3
11q5

−181440π2a02a411p1 − 181440π2a02a411q1 − 181440π2a02a411q3 − 230400πa502p1

−115200πa502p5 − 230400πa502q1 − 115200πa502q3 − 115200πa502q5 + 4062720πa402a11p1
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+2031360πa402a11p5 + 4062720πa402a11q1 + 2031360πa402a11q3 + 2031360πa402a11q5

−137088πa302a
2
11p1 − 68544πa302a

2
11p5 − 137088πa302a

2
11q1 − 68544πa302a

2
11q3

−68544πa302a
2
11q5 − 7182720πa202a

3
11p1 − 2770560πa202a

3
11p5 − 7182720πa202a

3
11q1

−4412160πa202a
3
11q3 − 2770560πa202a

3
11q5 + 1851456πa02a411p1 + 718368πa02a411p5

+1851456πa02a411q1 + 1133088πa02a411q3 + 718368πa02a411q5 − 112320πa511p1

−112320πa511q1 − 112320πa511q3 + 655360a502p1 + 327680a502p5 + 655360a502q1

+327680a502q3 + 327680a502q5 − 7471104a402a11p1 − 3735552a402a11p5 − 7471104a402a11q1

−3735552a402a11q3 − 3735552a402a11q5 + 8601600a302a
2
11p1 + 4300800a302a

2
11p5

+8601600a302a
2
11q1 + 4300800a302a

2
11q3 + 4300800a302a

2
11q5 + 1687552a202a

3
11p1

+843776a202a
3
11p5 + 1687552a202a

3
11q1 + 843776a202a

3
11q3 + 843776a202a

3
11q5

−3317760a02a411p1 − 1658880a02a411p5 − 3317760a02a411q1 − 1658880a02a411q3

−1658880a02a411q5 + 417792a511p1 + 208896a511p5 + 417792a511q1 + 208896a511q3

+208896a511q5).

(20)

Now, for the above solutions, higher Lyapunov constants are obtained as follows:

V5 =
a3

11(p1 + p5 + q1 + q5)

75600F2
V51, V6 =

a3
11(p1 + p5 + q1 + q5)

7257600F2
, (21)

where

V51 = 1368241875π4a402a
2
11 − 873888750π4a302a

3
11 + 1637212500π3a502a11

−7388366400π3a402a
2
11 + 4650108750π3a302a

3
11 − 602883000π3a202a

4
11 + 1746360000π2a602

−20053137600π2a502a11 + 15308559360π2a402a
2
11 − 7723408320π2a302a

3
11

+2924456400π2a202a
4
11 − 104900400π2a02a511 − 9722956800πa602

+93514199040πa502a11 − 72499908096πa402a
2
11 + 9961943040πa302a

3
11

+309710592πa202a
4
11 − 109900800πa02a511 + 25415040πa611 + 12918456320a602

−147270402048a502a11 + 173518356480a402a
2
11 − 11920211968a302a

3
11 − 11890851840a202a

4
11

+1497366528a02a511,

V61 = 11366932500π5a402a
3
11 + 230285632500π4a502a

2
11 + 18003384000π4a402a

3
11

−92960713125π4a302a
4
11 + 817249702500π3a602a11 − 1643497516800π3a502a

2
11

−107742135825π3a402a
3
11 + 388552140000π3a302a

4
11 − 57514388175π3a202a

5
11

+401163840000π2a702 − 7740994435200π2a602a11 + 5323022745120π2a502a
2
11

−629941730400π2a402a
3
11 − 481856099400π2a302a

4
11 + 280778162400π2a202a

5
11

−6007332600π2a02a611 − 2037216153600πa702 + 24997831495680πa602a11

−15319006313472πa502a
2
11 − 1487806424064πa402a

3
11 + 1648446825984πa302a

4
11

−200769679872πa202a
5
11 − 9968094720πa02a611 + 2504040960πa711 + 2480343613440a702

−27449135988736a602a11 + 23890218713088a502a
2
11 + 8816494116864a402a

3
11

−3045937119232a302a
4
11 − 473520144384a202a

5
11 + 95831457792a02a611.

(22)
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To obtain the maximal number of limit cycles in system (15), we assume p1 +
p5 + q1 + q5 6= 0. We first solve V51 to obtain the solutions a02 = z∗a11, where z∗

is a solution of
(1746360000π2 − 9722956800π + 12918456320)z6 + 25415040π − (104900400π2 + 109900800π

−1497366528)z + (2924456400π2 − 602883000π3 + 309710592π − 11890851840)z2

+(4650108750π3 − 873888750π4 − 7723408320π2 + 9961943040π − 11920211968)z3

+(1368241875π4 − 7388366400π3 + 15308559360π2 − 72499908096π + 173518356480)z4

+(1637212500π3 − 20053137600π2 + 93514199040π − 147270402048)z5 = 0.
(23)

It is easily verified that the equation (23) has two solutions: −0.2160073381 · · · ,
1.656188526 · · · . Then we compute

det

[
∂(V1,V2,V3,V4,V5)

∂(p6, p2, p4, p3, a02)

]
=

(p1 + p5 + q1 + q5)a4
11Fdet

33861058560000F2
,

and
resultant(V51,V61, a02) = c1 × 10139a42

11,

resultant(V51, Fdet, a02) = c2 × 10204a60
11,

resultant(V51, F0, a02) = c3 × 10111a48
11,

(24)

where c1, c2 and c3 are non-zero constants. By Theorem 2.1, system (15) have 6
small-amplitude limit cycles around the origin. Theorem 4.1 is proved.

5. Conclusion. In this paper, we considered a class of planar switching quadratic
Liénard systems, and gave an algorithm for computing the Lyapunov constants of
the planar switching systems with three switching lines. We obtained the center
condition and proved the existence of 3 limit cycles using the algorithm with the
aid of Maple. We further constructed a perturbed system, and proved the existence
of 6 limit cycles around the origin. The existence of 6 limit cycles is a new lower
bound on the maximal number of small-amplitude limit cycles obtained around one
singular point in such switching systems with three switching lines.
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