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ABSTRACT. In this paper, we consider a class of quadratic switching Liénard
systems with three switching lines. We give an algorithm for computing the
Lyapunov constants of this system. Based on this method, we obtain a center
condition and three limit cycles bifurcating from the focus (0, 0). Further, an
example of quadratic switching systems is constructed to show the existence
of six limit cycles bifurcating from the center. This is a new low bound on the
maximal number of small-amplitude limit cycles obtained in such quadratic
switching systems.

1. Introduction. In mechanics, engineering and control fields, many mathemati-
cal models are described by dynamical systems whose right-hand side are not con-
tinuous or not differentiable, see for instance the classical books [1, 12]. Based
on the important application of switching systems, the center and limit cycle of
switching systems have attracted more and more attention.

Filippov [7] established the qualitative theory for switching systems. Coll and
Gasull [4] obtained formulas for computing the first three Lyapunov quantities.
Five limit cycles in a quadratic switching system are constructed by Gasull and
Torregrosa [8], while only 4 limit cycles exist for quadratic continuous systems [14,
2]. Center conditions have been established for the switching Kukles and Liénard
systems [8, 5]. Han and Zhang [11] proved that 2 limit cycles can bifurcate from a
focus for piecewise linear systems. Chen and Du [3] constructed a switching Bautin
system to show the existence of 9 limit cycles. Tian and Yu [15] provided a complete
classification on center conditions in the switching Bautin system, and constructed
an example to prove that 10 limit cycles can bifurcate from the center. Recently,
a planar quadratic switching system (the switching line isn’t straight) has been
constructed to obtain 16 limit cycles [6] by using the averaging approach up to &2
order. Meanwhile, some works focus on the center and limit cycle problems in cubic
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switching systems. Guo et al. [10] studied a class of Z-equivariant cubic switching
systems, and showed the existence of 18 limit cycles. Very recently, Gouveia and
Torregrosa [9] found 24 limit cycles in a cubic switching polynomial system by
perturbing a single Darboux center. Yu et al. [18] constructed a cubic switching
polynomial system with Z,-symmetry, and proved that such a system could exhibit
total 18 limit cycles around symmetric foci.

However, few works focus on the system with more than two switching lines. For
example, Wang et al. [16] investigated the limit cycle bifurcations for a class of
perturbed planar piecewise smooth systems with 4 switching lines. Li and Yu [13]
constructed a cubic Zs-equivariant system with 4 switching lines and proved the
existence of 15 limit cycles.

If non-smooth systems have different definitions for the continuous vector fields
in two or more different regions divided by lines or curves, we call such systems
switching systems. For example, a class of switching system with three lines (y >
0,x=0; <0,y =0; y <0,z =0) is described by

0z —y+ fi(z,y), =+ 0y + gi(z,y)),
(#,9) =1 (0z—y+ fo(z,y), 2+ 0y +g2(z,y)), if2>0, (1)
0z —y+ fs(z,y), =+ 0y + gs(z,y)),
where 0| < 1, fi(z,y) and g;(x,y), i = 1,2,3 are analytic functions in = and y,
starting from at least second-order terms. Actually, the origin of system (1) is an
equilibrium. System (1) includes three subsystems called S;, S and S5, which
defined for [z < 0,y < 0], [z > 0] and [z < 0,y > 0] respectively.

Many researchers [17] have consider the smooth generalized Liénard system ¢ +
f(¥)y+ g(y) = 0, which is rewritten as a differential system:

if x <0,y <0,

if x <0,y >0,

i=-zf(y) —gly), y=u=x

In this paper, we will study a switching Liénard system:

_ 2
(2(6+a11y) Yy + a2y ) if z<0,y<0,

(;)z (;y> if x>0, (2)

( z(6 + bi1y) — y + bozy?

- ), if z<0,y>0,

where §, a;’s and b;’s are real parameters, satisfying |§] < 1.

To study the center conditions and bifurcation of limit cycles associated with a
singular point in a switching system, we need to compute Lyapunov constants of
the switching Liénard system (2).

The main goal of this paper is to give an algorithm for computing Lyapunov
constants of switching systems with three switching lines. Based on the method,
we derive center condition and analyze the bifurcation of limit cycles in (2). We
compute the first four Lyapunov constants for the singular point (0, 0) of system (2)
to obtain the center conditions and prove the existence of 3 limit cycles bifurcating
from the origin. Then we choose the center condition with proper perturbation to
construct a perturbed system, and then compute the Lyapunov constants associated
with the origin to prove the existence of six limit cycles around (0, 0).
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2. Computation of Lyapunov constants. In this section, we give an algorithm
for computing Lyapunov constants. Note that by computation we know ¢ is the
linear perturbation parameter, which will be setted as 0 when we consider limit
cycle and center problems. It is observed that system (2) is a special case of (1) by
letting 6 = 0. Thus we give the general method for computing Lypunov constants
of system (1).

We first rewrite the system (1) as

dx—y+ > Xiw(z,y)
k=2

o , if x<0,y<0,
x+ 0y + > Yir(r,y)
k=2
i dx—y+ > Xow(z,y)
(.): k=2 , if x>0, (3)
Y x+ 0y + > Yor(z,y)
k=2
Sz —y+ > Xpu(z,y)
k=2 , if v <0,y>0,

x4+ 0oy + 3 Yar(z,y)
k=2

where X; x(x,y) and Y; (z,y) are homogeneous polynomials in « and y. Under the
polar coordinates transformation, z=rcosf and y=rsiné, (3) can be rewritten as

57’ + 2222 TLk(a Tk
1+ ZZ:Q @Lk(e)?“k_l
dr 6T+Zn: T ,k(e Tk T T

a6~ 1+ZZ,Z(2:)2 j(G)T’f—l = B(r0), foroe (-3 3) 4)
or + ZZ=2 Tgvk(e rk
1+ ZZ:Q @37k(9)7“k_1

= Fi(r,0), forfe(—m,—3),

= F3(r,0), for6e (%, n),

where T; 1(0) and O, 1 () are polynomials in sinf and cosf of degrees k + 1. By
the method of small parameters of Poincaré, the solutions of the three subsystems
of (4) are given by

ri(h,0) =Y up(@)hF,  ra(h,0) =D wk(O)RF,  ra(h,0) =D wi(0)hF,

k>1 k>1 k>1
(5)

where

(6)
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FIGURE 1. Diagram

Substituting the solutions (5) into (4), we can solve uy () or v (f) one by one by
integral operations. Consequently, we can define the following successive functions,
™ T 0
Al(h) =h-— Tl(h, —7T), Ag(h) = Tg(h, 5) —Tg(h, —5), Ag(h) = 7“3(]1,7'(') —7"3(h, 5)
for the three subsystems of (4), respectively. From the diagram (Figure 1), the
successive function for the switching system (3) can be defined as
A(h) = Da(h) + Az (h) + As(h)
=h—ri(h,—m) +ra(h,5) —ra(h,—5) +r3(h,7m) —r3(h, §) (7)
= r3(h,m) —ri(h, —m).
Thus the displacement function A(h) can be expanded as
n n—1
A(h) = (wi(m) = up(=m)h* = Y Veh*H, (8)
k=1 k=0
where V}, is called the kth-order Lyapunov constant of the switching system (3).

Based on the above theory, we give an algorithm for computing the Lyapunov
constants.

Next, we turn to discuss how to determine the maximal number of limit cycles
which may bifurcate from a Hopf critical point. Generally, the following theorem
gives sufficient conditions for the existence of small-amplitude limit cycles in the
switching system (1). (The proof can be found in [15].)

Theorem 2.1. Suppose that there exists a sequence of Lyapunov constants of

system (3), Vig, Vi, ooy Vi, with 1 = dg < 43 < --- < iy, such that V; =

O(|Vigs---» Vi,|) for any iy < j < i141. Further, if at the critical point C, V;, =
w=-=V,-1=0, V;, #0, and

8(‘/;'07‘/2'17"'7‘/;1971) 7&0 (9)
8(01,02,"' ,Ck) C ’

then system (3) has exactly k limit cycles in a §-ball with its center at the origin.

21

det

3. Center condition and Hopf bifurcation for system (2). In this section,
we consider the center conditions and bifurcation of limit cycles for the switching
quadratic Liénard system (2). Clearly, the singular point (0,0) of system (2) is a
Hopf-type critical point. In the following, we first use Algorithm 1 to compute the
Lyapunov constants for the origin of system (2), and then use them to derive the
center conditions and consider limit cycle bifurcation.
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Algorithm 1 Lyapunov Constants Algorithm

Input: System (1).

Output: Lyapunov constants.

1: Rewrite system (1) as (4).

2: Let Fj;(h,0) be the expression by substituting (5) to F;(r,0) for i = 1,2,3 in
(4).

3: Expand Fj(h, §) in Taylor series at h = 0, denoted by F;(h,0) = 72| P; j(0)h’.

4: Let E; ; be the ordinary equation du’“(e) = P, 1(0), Es 1 be the ordinary equa-
tion dv;—@ = P, ;(9), Es5 1, be the ordlnary equation d%ﬁ = P; (0).

5: for k from 1 to n+1 do

6:  Solve ug(8) from Ej i, vi(0) from Es j, and wy(#) from E3j under the initial

conditions (6).

7: end for

8: for k from 0 to n do

9: Let Vi, = wk+1(7r) - uk+1(77T).

10: end for

11: return V.

With the aid of the program in Maple, we have computed the Lyapunov constants
associated with the singular points (0,0) of system (2), as given in the following
theorem.

Theorem 3.1. For system (2), the first four Lyapunov constants at the origin are
given by

Vo = 76 + 0(62),

Vi = 5(b11 — bo2 — ag2 — an1),

Vo = 15(ads — b3a) — 35(at; — b%1) + ({5 — 3)(ao2a11 + bozbi1),

Vs = 1é5 (an biﬁ) (% }1?)(%2‘111 bozbll)-
Now, we turn to discuss the Hopf bifurcation of system (2). From Theorem 3.1

we have the following two theorems.

Theorem 3.2. The origin of system (2) is a center if and only if § =0, b1 = a1
and b02 = —aop2-

Theorem 3.3. System (2) can have at least 3 limit cycles around the origin.

3.1. Proof of Theorems 3.2 and 3.3. For system (2), as discussed in the proof
of Theorem 3.1, we set § = 0 to get Vy = 0. From the second Lyapunov constant
V1 in Theorem 3.1, we solve V; = 0 to obtain

bo2 = b11 — ag2 — ai1. (10)
Then, solving Vo = 0 yields
37Tb11 + 4@11 — 12b11

_ . 11
ao2 T (11)

Then we have

a1 — b1
Vg=——auzhn 12
® 7 71080(3r — 16)2 " (12)
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where

Va1 = (4096 — 13927 — 7272) (a2, + b2,) — (88064 — 678727 + 1648872

—1215713)a11b11. (13)
Then, we solve V3 = 0. We give the following discussion.

1) Let a11 — b1 = 0 to solve V5 = 0.
Then we have b1; = a11 and bgs = —ap2 by (10)(11). Under this condition,
system (2) becomes

X

(Z): <;y>’ if z>0,, (14)

_ _ 2
<xy+mww Go2Y >,ifx<ay>&

_ 2
( Y+ anzy + aozy ),ifx<ay<m

It is immediately observed that system (14) remains unchanged under the
transformation [z — z, y — —y, t — —t], which implies (14) is symmetric
with the x-axis. Thus, the origin is a center.

2) It is shown that V3; has the discriminant,

A = —3(16 — 37)2(135m — 376)(26624 — 216967 + 554472 — 40573) < 0

which implies that V3; = 0 has no solutions besides a1; = b;; = 0. However,
a11 = b1x = 0 results bpa = age = 0, which makes system (2) become the
trivial integral system & = —y, y = x. Thus the origin is a center, and this is
a special case of 1).

From the case 1), Theorem 3.2 is proved.

Next, for obtaining the maximum number of limit cycles, we set a1 # bi1.
With the results obtained above, a direct calculation shows that the determinant
evaluated at the critical values is given by

O(Vi,V2) | _  (a1x — b11) (3w — 16)
a(bog, a()g) o 144

From case 2), by Theorem 2.1, system (2) have 3 small-amplitude limit cycles
bifurcating from the center-type singular point (the origin). Theorem 3.3 is proved.

et | £0.

4. Six limit cycles generated by perturbing system (2) under the center
condition. In this section, we present our main result of this paper. We want to
perturb the system (2) to generate small-amplitude limit cycles around the center.
We add quadratic perturbations to system (2) to obtain the following perturbed
system:

[ —y + a11zy + ao2y® + e(6x 4+ pra® + paxy + psy?)
| @+ €(0y + paz® + psxy + pey’)

(ac): _y}, if x > 0,
7 |z

[ —y + a11zy — ao2y® + e(dx + q1a® + gy + g3y°)
|z + €0y + qax® + gszy + qey”)

},ifﬂc<0,y<0,

},ifa:<0,y>0,

(15)
where §, p;’s and ¢;’s are real parameters, satisfying |§] < 1 and 0 < e < 1.
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Theorem 4.1. The perturbed system (15) can have at least siz limit cycles around
the origin.

Proof. To prove the existence of six limit cycles, we need to find the e-order Lya-
punov constants €V;, i =0,1,---. First we have Vy = 74, thus letting § = 0 yields
Vo = 0. Then we obtain

1
Vi=2(q2+qs+ 296 — 201 — g3 — 45 — 2p1 — P3 — P5 — P2 — P4 — 2Ds)- (16)

3

Solving V; for pg to get

1
PGZCIG—Q1—Pl+§(Q2+Q4—QS—Q5—ps—pS—Pz—m)- (17)

Now, in order to solve higher order Lyapunov constant equations using the re-
maining perturbation parameters, we assume that Fy = ay1 F1 Fy # 0, where

Fy
F>

= 451ad, — 6magzair — 128a2, + 48a;,

= 10327573 ad,a3, — 27540072 ad,a11 — 75276072 ad,a?; + 130950072 adqal;
—1814407%anzat; — 1152007ad, + 20313607aisa11 — 68544mad,a?; — 4412160mad,al;
+1133088mao2at; — 1123207af; + 327680a3, — 3735552a0,a11 + 4300800a3,a;

+843776a3a3, — 1658880a0zat; + 20889643 .
(18)

Then, solving Vs, V3 and V, for pa2, p4, ps respectively, we obtain

p2 =

yZ

p3

_1
6ay1

(6mao2p1 + 3waoaps + 3waoepd + 3maoepb + 6mac2qr + 3mac2gs — 3mTao2q4
+3mao2qs — 3mai1p1 — 3wai11ps — 3waiiqr — 3wai1gs — 8aozp1 — 16ao2ps — 4aozps
—8ap2q1 — 16a02q3 — 4ao2qs + 4ai11p1 + 2a11p3 + 6a11pa + 2a11ps + 4a11q1 + 6a1192
+2a11q3 — 6a11qa + 2a11¢s),

= —%1(907ra%2p1 + 45magops + 45madops + 90Tagaqr + 45madaqs — 45magaqa
+457ma3,qs — 147maainpr — 96wao2a11ps — Slmagaainps — 147mavzain g1
—967ao2a11q3 + 6maoza11qs — Slmagzai1gs + 6wad pr + 6maiips + 6maii 1
+6ma?igs — 256ad.p1 — 128a22p3 — 128a2,ps — 256a22q1 — 128a25q3 + 12843244
—128a25q5 + 448ag2a11p1 + 288a02a11p3 + 160aoza11ps + 448ap2a11q1 + 288a02a11qs
+160a02a11q5 — 16a¥1p1 — 8af1ps — 8aiips — 16at1q1 — 8afigs — 48af1qs — 8aiigs),
(19)

= — 5, (20655078, af, p1 + 10327573 adyafy ps + 2065503 ag,at, g1 + 1032753 ady a3
+103275m3a3,a%, g5 — 55080072 ai,a11p1 — 27540072 ad,a11p5 — 55080072ag,a11q1
—27540072ag,a11q3 — 27540072 ad,a1195 — 1505520m2a3,a2, p1 — 7527607m2ad,a2, ps
—1505520m2a3,a%, q1 — 75276072ad, a2, g3 — 752760m%a3,a2, g5 + 20844007%a2 a3, p1
+774900m2a2, a3, ps + 208440072a2, a3, g1 + 1309500m2a2, a3, g5 + 774900m2a2, a3, g5
—181440m2ag2at; p1 — 181440m2agza}; g1 — 181440m2agz2at,; g3 — 230400mad,py

—115200ma?,ps — 230400mal,q1 — 1152007al, gz — 115200ma’, g5 + 4062720wat, a11p1
02 02 02 02 02
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+20313607ag,a11ps + 4062720mag,a11q1 + 2031360mad,a11q3 + 2031360mad,a1195
—1370887ad,a?, p1 — 68544wad,a?, ps — 137088maj,a?,q1 — 68544mad,a?, g3
—68544mad,a?, g5 — 7182720wa3 a3, p1 — 2770560ma3 a3, ps — 7182720maZ,as, q1
—4412160ma2,a’, g3 — 2770560ma3 a3, g5 + 1851456manzal; p1 + 718368mao2at; ps
+1851456wag2at; q1 + 1133088manzat; g3 + 718368manzat; gs — 112320maf; p1

—1123207af; q1 — 1123207af; g3 + 655360a3,p1 + 327680ad,p5 + 655360a5,q1
+327680a,q3 + 327680a3,g5 — 7471104ad,a11p1 — 3735552a0,a11ps — 7471104ag,a11q1
—3735552a(,a1193 — 3735552a3,a11¢5 + 8601600a3,aF, p1 + 4300800ad,a3, ps
+8601600a3,a3,q1 + 4300800a3,a?, g3 + 4300800a3,a?; g5 + 1687552a2,a%, p1
+843776a2,a3, ps + 1687552a2,a3, g1 + 843776a2,a3, g3 + 843776a2,a3 g5
—3317760a02a$,p1 — 1658880apz2a};ps — 3317760ao2at, g1 — 1658880ap2a}; g3

—1658880a02a}, g5 + 417792a3,p1 + 208896a3, ps + 417792a3, q1 + 20889643, g3

+208896a%; g5).
(20)

Now, for the above solutions, higher Lyapunov constants are obtained as follows:

adi(prtps a+as)), o, ahi(prtps 6t gs)

Vs = 75600 F, 7257600 F, ’

(21)

where

V51

Vo1

= 1368241875m%a}, a2, — 873888750m%ad, a3, + 163721250073 af,a11
—738836640073ad,a?; + 465010875073 a3, a3, — 60288300073 a2 at; + 174636000072as,
—20053137600m2a3,a11 + 1530855936072 ad,a?; — 7723408320203, a$,
4292445640072 a2, al; — 10490040072 ag2a3; — 9722956800mal,

+93514199040mad,a11 — 72499908096mad,a?, + 9961943040mag,a’,
+309710592ma,al; — 1099008007magza?; + 25415040ma$; + 12918456320a5,
—147270402048a3,a11 + 173518356480ag,a%, — 11920211968a3,a3, — 11890851840a2,a7,
+1497366528a02a3,

= 113669325007°ad,a$; + 23028563250074ad,a?; + 18003384000m%ag, a3,
—929607131257%ad,a%; + 817249702500m%al,a11 — 1643497516800m3ad,a2,
—107742135825m3ad,a3; + 388552140000m3ad,a, — 57514388175m3a2,al,
+40116384000072af, — 7740994435200m2aS,a11 + 5323022745120m2ag,a?;
—62994173040072ad, a3, — 4818560994007m2ad,a, + 280778162400m%a a3,
—600733260072ag2a$; — 2037216153600mal, + 24997831495680mad,a11
—153190063134727al,a?, — 1487806424064mad, a3, + 1648446825984mad,at,
—200769679872ma2,al; — 9968094720mag2a$; + 2504040960ma]; + 2480343613440a,
—27449135988736a5,a11 + 23890218713088a3,a2; + 8816494116864ad,a?;

—3045937119232a3,a%; — 473520144384a2,a3; + 95831457792a024a$; .
(22)
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To obtain the maximal number of limit cycles in system (15), we assume p; +
ps +q1 + g5 # 0. We first solve V51 to obtain the solutions ags = 2*a11, where z*
is a solution of

(174636000072 — 97229568007 + 12918456320) 25 + 254150407 — (10490040072 + 1099008007
—1497366528) 2 + (292445640072 — 60288300073 4 3097105927 — 11890851840) 22
+(465010875073 — 8738887507 — 772340832072 + 99619430407 — 11920211968) 23
+(1368241875m* — 73883664007 + 1530855936072 — 724999080967 + 173518356480)2*

+(163721250073 — 2005313760072 + 935141990407 — 147270402048)25 =
(23)
It is easily verified that the equation (23) has two solutions: —0.2160073381-- -,
1.656188526 - - - . Then we compute
O(V1, Vo, V3, Vu, V5) | _ (p1 415 + a1 + g5)ai; Fet

det =
¢ 9(ps, P2, P4, P3, A02) 33861058560000 F3 ’

and
resultant(Vs1, Vo1, ao2) = 1 x 10%%a33,

resultant(Vs1, Fyer, ao2) = c2 x 10294499, (24)
resultant(Vs1, Fo, agz2) = c3 x 101108,

where ¢1, ¢z and c3 are non-zero constants. By Theorem 2.1, system (15) have 6
small-amplitude limit cycles around the origin. Theorem 4.1 is proved. 0

5. Conclusion. In this paper, we considered a class of planar switching quadratic
Liénard systems, and gave an algorithm for computing the Lyapunov constants of
the planar switching systems with three switching lines. We obtained the center
condition and proved the existence of 3 limit cycles using the algorithm with the
aid of Maple. We further constructed a perturbed system, and proved the existence
of 6 limit cycles around the origin. The existence of 6 limit cycles is a new lower
bound on the maximal number of small-amplitude limit cycles obtained around one
singular point in such switching systems with three switching lines.

Acknowledgment. The authors thank Professor Dongming Wang who supervised
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